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1. Introduction

An inconsistent relationship between the pronunciation and spelling of words in var-
ious languages has been shown to affect the rate at which listeners recognize spoken
words (Ziegler et al., 1997; Ziegler and Ferrand, 1998). In English, for example, the
rhyme /-2k/ is consistently reflected in spelling as it has only one possible spelling
(“-uck” as in “luck”), but the rhyme /-ip/ is not, because it has two possible spellings:
“-eap” or “-eep” as in “leap” or “keep.” As a result, the recognition of inconsistently
spelled words, “leap” and “keep”, is slower than that of consistently spelled words,
“luck” (Ziegler and Ferrand, 1998). This effect, called phonological-orthographic (P-O)
consistency, has been found in not only alphabetic languages but also logographic
languages such as Chinese and Japanese. Unlike alphabetic languages, P-O consis-
tency in logographic languages, has been measured based on homophone density,
orthographic consistency, and frequency of phonological and orthographic neighbours
(Chen et al., 2016; Hino et al., 2017).

These studies, it should be noted that, have focused exclusively on carefully
pronounced words, namely, citation forms of words. This suggests that it is still un-
clear whether the P-O consistency effect applies only to the citation forms of words
or generalizes to the reduced forms of words often found in conversational speech. In
conversational speech, there are many instances of articulatory undershoot, leading
to the reduction of acoustic signals. For example, in English, yesterday /jEst@~deI/
may be pronounced as [jESeI] (Tucker, 2007), and in Japaneses, daigaku /daigaku/
‘university’ could be produced as [daiakW] (Arai, 1999). This means that the pronun-
ciation of many words in conversational speech is in fact inconsistent with the spelling
due to this reduction. In the present study, we investigate how the P-O consistency
effect interacts with phonetic reduction in a logographic language. Specifically, we
are interested in the time-course of the P-O consistency effect with reduced forms of
Japanese words as indexed by pupil dilation.

1.1 P-O consistency in Japanese

The degree to which a sound is consistently reflected in spelling impacts the recogni-
tion latency of spoken words, and if a sound is inconsistently reflected in spelling, the
inconsistency delays recognition of spoken words (Ziegler et al., 2003). While there
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are many studies investigating the effect of P-O consistency on spoken word recogni-
tion, research on this effect among Japanese speakers is much more restricted. One
experiment by Hino et al. (2017) tested the effect using the phonological-orthographic
(P-O) consistency index. They calculated the index based on the phonological and
orthographic neighbours of target words. They first identified the phonological neigh-
bours of the target word and classified these neighbours into two types: “orthographic
friend” and “orthographic enemy.” If the phonological neighbour was also an ortho-
graphic neighbour of the target word, it was categorized as an orthographic friend; if
not, it was categorized an orthographic enemy. Hino et al. (2017) defined phonologi-
cal neighbours as words that differ by a single mora from the target word, and they
defined orthographic neighbours as words that differ by a single character from the
target word (Fushimi et al., 1999). For example, if the target word is [gesuto ゲスト
/ge-su-to/ ‘guest’], the phonological neighbours of the target word are [kyasuto キャ
スト /kja-su-to/ ‘cast’] , [tesuto テスト /te-su-to/ ‘test’], [besuto ベスト /be-su-to/
‘best’] and [gesui 下水 /ge-su-i/ ‘sewer’] because all of these words differ by a single
mora from the target word. 1 Of these words, kyasuto, tesuto, and besuto are ortho-
graphic friends as they differ by a single character from the target word, and Gesui is
an orthographic enemy as more than one character is different from the target word
(Hino et al., 2017). Note that Japanese uses multiple written scripts, one logographic
script called ‘Kanji’, and two syllabic scripts called ‘Hiragana’ and ‘Katakana’, de-
pending on a type of words, although the Kanji script is most commonly used.

After the classification of the phonological neighbours into orthographic friends
and enemies, Hino et al. (2017) computed P-O consistency index as follows.

P-O consistency index = (Target word frequency + Summed frequency of
orthographic friends) / (Target word frequency + Summed frequency of ortho-
graphic friends and enemies)

The index ranges from 0 to 1, with 0 indicating low consistency and 1 indicating high
consistency. If most of the phonological neighbours are also orthographic friends,
the consistency index becomes higher, but if most of the phonological neighbors are
orthographic enemies, the consistency index becomes lower. Hino et al. (2017) selected
48 logographic words based on the index, 24 high (mean consistency, 0.755) and 24
low (mean consistency, 0.039) consistency words, and conducted an auditory lexical
decision task. They found an effect of P-O consistency; response latencies for low
consistency words were slower than for high consistency words.

1.2 Phonetic reduction in Japanese

Most researchers have investigated the effect of P-O consistency using carefully pro-
nounced words. If we consider conversational speech, however, another type of P-O

1Hyphens indicate mora boundaries.
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inconsistency arises. Research shows that variation and reduction of acoustic sig-
nals are prevalent in conversational speech across languages (Ernestus and Warner,
2011; Barry and Andreeva, 2001). For example, Arai (1999) investigated pronunci-
ation variants of Japanese words in telephone conversations and found a variety of
reduction:

Nasalized vowels before nasals: in case of the word /tenisu/, the nasal and
following /i/ are deleted, and the /e/ is both nasalized and lengthened.

/tenisu/ → [tẽ:sW] ‘tennis’

Approximated voiced stops: the articulation of stop consonants is approximated
due to the lack of full oral closure. In the extreme case, the consonants are
deleted:

/daigaku/ → [daiGAkW] or [daiakW] ‘university’
/b/ /d/ /g/ → [B] [D] [G] → [Ø]

In the present study, we focus on the reduction of consonants, specifically nasals
and voiced stops, for two reasons. First, Mukai and Tucker (in preparation) have
shown that speech style difference (read and conversational) affects the duration of
consonants more than vowels in Japanese. Second, Arai (1999); Mukai and Tucker
(2017) have demonstrated that nasals and voiced stops show the reduction of segments
rather than the alternation in voicing.

1.3 The present study

The aim of this study is to compare the time-course of P-O consistency effect between
reduced and citation forms of Japanese words as indicated by pupil dilation. The pupil
has been shown to respond to physiological arousal during cognitive tasks (Beatty,
1982). The pupil dilates as cognitive tasks become more difficult, and peak dilation
correlates with the amount of cognitive effort induced by tasks. (Zekveld et al.,
2010). Pupil dilation has been utilized as index of cognitive load (Kahneman and
Beatty, 1966) and applied to a variety of psycholinguistic studies, such as speech
intelligibility (Zekveld and Kramer, 2014), speech planning (Papesh and Goldinger,
2012), word frequency (Kuchinke et al., 2007), and masked priming (Geller et al.,
2016). Pupillometry offers a reliable method to examine allocations of cognitive
resources imposed by different variables in speech processing (Laeng et al., 2012).
For our experiment, pupillometry is particularly beneficial because it reflects the
magnitude of cognitive effort over time in the absence of voluntary and conscious
processes (Laeng et al., 2012) and it also reflects cognitive effort without the effect of
task-specific strategies (Papesh and Goldinger, 2012).

Our research questions are twofold: (1) How does the P-O consistency effect
interact with reduction in Japanese? (2) Do we see the same effect of P-O consistency
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between reduced and citation forms of Japanese words? If reduction influences P-O
consistency, we would observe an interaction between the effect of reduction and P-O
consistency. This suggests that reduction creates an additional mismatch between
pronunciation and orthography and that the P-O consistency effect interacts with the
actual pronunciation (the reduced form) of words. If reduction does not affect P-O
consistency, we would not observe an interaction between the effect of reduction and
P-O consistency. This means that reduction does not create an additional mismatch
between pronunciation and orthography and that the P-O consistency effect interacts
with the citation form of words.

2. Method

2.1 Participants

Thirty-eight native speakers of Japanese (female, n = 16) were recruited at Nagoya
University and ranged in age from 18 to 25 years old (M = 19.7, SD = 1.69). All
participants reported normal or corrected-to-normal vision and hearing.

2.2 Materials

We chose 226 disyllabic and digraphic words from the Balanced Corpus of Con-
temporary Written Japanese (Maekawa et al., 2014). These words consisted of a
word-medial nasal or voiced stop. All words were recorded in both reduced and ci-
tation forms by a female native Japanese speaker, resulting in 452 total stimuli. We
instructed the speaker to produce the words clearly for citation forms and casually
(spontaneous speech like) for reduced forms. The speaker produced multiple tokens
of both forms, and one of the researchers selected the most natural sounding tokens
as stimuli. We then normalized the amplitude of the words. Table 1 shows acoustic
properties of stimuli in both forms. In the table, a target segment (nasal or voiced
stop) is represented as TarSeg, reduction (reduced or citation form) as Reduc, a word
duration in milliseconds as WorDur, a target segment duration in milliseconds as Seg-
Dur, speech rate (the number of vowels per second) as SRate, a mean word pitch in
Herz as WordPit, and an intensity difference in dB as IntDiff. We defined the inten-
sity difference as the difference between the minimum intensity of the target segment
to the averaged maximum intensity of surrounding segments (Tucker, 2011). The
intensity difference measure was provided only for voiced stops because Mukai and
Tucker (2017) suggest that the intensity difference might not be a reliable measure
for the reduction of nasals. Overall, reduced forms displayed shorter duration, faster
speech rate, lower mean pitch, and smaller intensity difference.

We created four stimulus lists, each of which contained 150 items: 115 target
words, 30 non-target items and 5 practice words. The target words were counterbal-
anced across reduction, so that none of the lists consisted of the same word twice.
Similar to Perre et al. (2011), we employed a 500-ms-long pure tone as non-target
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SegType Reduc WorDur SegDur SRate WorPit IntDiff
Nasal Citation 0.62 0.12 4.24 223.73 –
Nasal Reduced 0.45 0.09 5.74 203.35 –
VoicedStop Citation 0.61 0.05 5.08 222.07 15.02
VoicedStop Reduced 0.46 0.04 6.73 204.33 13.40

Table 1: Mean values of acoustic properties of stimuli in reduced and citation forms.

items, and the ratio between the target and non-target trials was 70% and 30%. Par-
ticipants’ task was to identify a pure tone, so that they did not make any linguistically
derived decision or that they did not respond to the target words (Perre et al., 2011).

2.3 Apparatus

We designed and controlled the experiment using SR Research Experiment Builder
software. The movements of the right eye were tracked by the EyeLink II head-
mounted eye-tracker (SR Research, Canada) in the pupil-only mode with a sampling
rate of 250 Hz. We utilized the Etymotic Research insert ER1 earphones to present
auditory stimuli and the 1024 × 768 resolution computer screen to present a fixation
cross.

2.4 Procedure

Participants sat on a chair in a quiet room at a distance of approximately 60 to 80
cm from the computer screen. Luminance of the room was kept constant throughout
the experiment. Participants were instructed to perform an auditory Go-NoGo task.
In this task, participants respond to particular stimuli (Go) but they do not respond
to a different set of stimuli (NoGo). In our experiment, participants looked at a
fixation cross presented at the centre of the screen on a gray background for 1500
ms and heard either a target word or a pure tone (as they continued looking at the
fixation cross). They then responded to either the pure tone by pressing a button
on a Microsoft Side Winder game-pad or the target word by not pressing the button.
The fixation cross disappeared 2000 ms after the onset of target words or after the
button presses trigged by pure tones. In order to allow time for the pupil to settle
back to baseline, a blank screen on a gray background remained for 4000 ms after the
disappearance of the fixation cross.

We calibrated the eye-tracker prior to each session, as well as every 29 trials.
We also ran drift-correction at the onset of every trial. Each session contained 150
trials, including 115 target words, 30 pure tones, and 5 practice items. The practice
items were provided at the beginning of sessions to familiarize the participants with
the task. The target words and pure tones were randomly assigned to each trial by
the software. Participants took a brief break every 29 trials. The experiment lasted
approximately 90 minutes.
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3. Results

3.1 Preprocessing pupil size data

We visually inspected the range of pre and post blink artifacts and removed eye-
blinks and their artifacts, 50 datapoints before and after the blinks. We then linearly
interpolated the removed datapoints for each trial. When the initial or final datapoint
in the trial was either the eye-blink or its artifact, the datapoint was replaced with the
nearest value to complete the interpolation. We then downsampled the interpolated
data to 50Hz and smoothed it using a five-point weighted moving-average smoothing
function. The same interpolation and smoothing procedures were also applied to the
gaze location data.

We calculated the baseline pupil size for each trial by averaging the pupil size in
the time window from 200 ms preceding the onset of stimuli to the onset of stimuli and
performed standard baseline subtraction for each trial to quantify the degree of pupil
dilation. We employed subtract baseline correction (absolute difference) rather than
divisive baseline correction (proportional difference) because percentage measures are
inflated when baseline pupil size is small (Beatty and Lucero-Wagoner, 2000; Mathôt,
2017). Relevant pupillary variables were computed on a trial-by-trial basis in the time
window from the onset of stimuli to 2000 ms after the onset. We defined the peak
dilation as the difference between the baseline pupil size and the maximum pupil size,
as well as the peak latency as the time elapsed from the onset of stimuli to the offset
of peak dilation.

The trials that contained excessive blinks and their artifacts (i.e. more than
30% of the trial) were excluded (12% of the data) and the participants who lost
more than 50% of their trials due to the excessive blinks and their artifacts were
also discarded (4 participants; 3.5% of the remaining data). Additional trials were
excluded when the peak latency was shorter than 400 ms (13.2% of the remaining
data), the peak dilation was smaller than 0 or bigger than 400 (3.3% of the remaining
data), the baseline pupil size were more than 2 standard deviations apart from the
mean baseline pupil size (3.6% of the remaining data) and the gaze location was more
than 300 pixels apart from the fixation cross on the screen in either x- or y-axis (8.5%
of the remaining data).

3.2 Data analysis

We applied generalized additive mixed modeling (GAMM) (Hastie and Tibshirani,
1990; Wood, 2006) to our data for two reasons. First, GAMM allows us to model
non-linear relationships, as well as linear relationships, between a response variable
and predictor variables. This is important because we expected pupil size to fluctuate
over time. GAMM also can model two (or more) dimensional nonlinear interaction
surfaces of continuous variables. Second reason that we applied GAMM is that it
allows us to control serial dependency in time-series data, namely, autocorrelation. It
considers the correlation between an observed value at time point t and an observed
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value at time point t+i (i =1) in a time series (Baayen et al., 2017). By virtue of
these functionalities, GAMM has been applied to model a variety of non-linear time
series data, such as electromagnetic articulography data (Wieling et al., 2016), format
trajectory data (Sóskuthy, 2017), visual world eye-tracking data (Veivo et al., 2016),
and event-related potential data (Porretta et al., 2017).

The variables of interest were Pupil Dilation (in the standard arbitrary unit de-
livered by the eye tracking system) as a response variable, and P-O consistency index
(0 - 1), Reduction (reduced or citation form), and Time (in milliseconds) as predictor
variables. We also had Word Duration (in milliseconds), Reduced Segment (nasal or
voiced stop), Baseline Pupil Size (same unit as Pupil Dilation), Pupil Gaze Coordi-
nates X and Y (x- and y-axis eye gaze position on the screen in pixels), Trial Index (6
to 150), Logged Word Frequency, Logged Number of Phonological Neighbours, and
Standardized Number of Homophones as control variables.

3.3 Summary of aggregated raw data

We inspected the aggregated raw pupil dilation data prior to fitting models. Figure
1 shows the grand average of pupillary responses over time for reduced and citation
forms from -1500 ms (the onset of the fixation cross) to 2000 ms (the offset of the
blank screen). Table 2 illustrates the means and standard deviations of peak dilation
and latency for the two forms. The trend of pupil dilation over time appears to be
comparable between the two forms, but the reduced form demonstrates greater peak
dilation and slower peak latency.

Reduction Peak dilation (SD) Peak latency in ms (SD)
Citation 113.68 (76.21) 1166.72 (510.25)
Reduced 123.05 (78.08) 1176.74 (492.56)

Table 2: Means and standard deviations of peak dilation and latency for reduced and
citation word forms.

3.4 Model fitting and evaluation

We performed model fitting and comparisons in the statistical environment R, version
3.4.4 (R Development Core Team, 2018) using the package mgcv (Wood, 2017), ver-
sion 1.8-23 and itsadug (van Rij et al., 2017), version 2.3. We followed the procedure
of fitting and evaluating models illustrated in Sóskuthy (2017), van Rij (2015), and
Wieling (2018). We chose the time window from 200ms to 2000 ms post stimulus
onset for our analysis, as reliable effects emerge slowly in pupillary response (200 to
300 ms) after a relevant cognitive event (Beatty, 1982).

Using a smooth function, Pupil Dilation was fitted as a function of P-O consis-
tency index, Reduction and Time with Word Duration, Reduced Segment, Baseline
Pupil Size, Pupil Gaze Coordinate X and Y, Trial Index, Logged Word Frequency,
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Figure 1: The grand average of pupillary responses over time for reduced and citation
word forms. The vertical dot line at -1500 ms indicates the onset of the fixation cross,
the line at 0 ms indicates the onset of stimuli and the line at 531 ms indicates the
mean offset of stimuli.

Logged Number of Phonological Neighbours, and Standardized Number of Homo-
phones. Furthermore, using a tensor product several types of interaction were in-
cluded: Time, P-O consistency index and Reduction, Time and Logged Word Fre-
quency, Time and Logged Number of Phonological Neighbours, Time and Standard-
ized Number of Homophones, as well as Pupil Gaze Coordinate X and Y (See Wood,
2006 for an overview of a smooth function and tensor product). Inclusion of the
three-way interaction between Time, Reduction and P-O consistency index allows us
to examine the effect of each word form and their interaction over time. Inclusion
of the two-way interactions between Time and the following variables (Logged Word
Frequency, Logged Number of Phonological Neighbours, and Standardized Number of
Homophones) reflects the possible difference in the effect of these variables over time,
and the interaction between Pupil Gaze Coordinate X and Y captures the possible
change in pupil size caused by different gaze locations on the screen (Wang, 2011).

We employed a backwards stepwise elimination procedure for fixed effects and a
forward fitting procedure for random effects to fit the optimal model. We evaluated
the contribution of input variables by χ2 test of fREML scores using compareML
function. We compared the fREML score of the full model to the score of the model
without one of the input variables and kept input variables that were justified by the
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comparison (p<.05). Inclusion of interactions was also assessed by the fREML score
comparison.

For fixed effects, we eliminated Logged Word Frequency, Logged Number of
Phonological Neighbours, and Standardized Number of Homophones, including their
interactions with Time. We also reduced the three-way interaction into two two-way
interactions: Time and Reduction as well as P-O consistency index and Reduction.
For random effects, while there are competing proposals regarding random-effects
structures (Barr et al., 2013; Matuschek et al., 2017), we followed Wieling’s approach
(2018) and employed model selection to determine the optimal random-effects struc-
ture. We included two factor smooths: ParIDConsis (unique combination of Partic-
ipant ID and P-O consistency index) for Time and ItemReduc (unique combination
of Item (i.e., word) and Reduction) for Time (See Wieling, 2018 for an overview of
random-effects structures). That is, we fitted separate factor smooths for each par-
ticipant at each P-O consistency index to reflect speaker-specific trends in the effect
of P-O consistency, as well as for each item at each word form to take into account
item-specific trends in the effect of reduction.

After verifying the number of basis functions for the predictor variables and
interactions using gam.check function, 2 we included an AR-1 correlation parameter
ρ = 0.96 to address autocorrelation and refitted the model with scaled-t family
in order for residuals to be normally distributed (Meulman et al., 2015; Wieling,
2018). Table 3 illustrates the summary of the final model showing the parametric
coefficients and approximate significance of smooth terms in the model: estimated
degrees of freedom (edf), reference degrees of freedom (Ref.df), F- and p-values for
smooth terms. In the summary, the parametric coefficients indicate the significant
difference of overall pupil dilation between the reference level (citation form) and
the reduced form. The smooth terms reveal the significance of non-linear patterns
associated with the predictor variables except P-O consistency index. We further
discuss the summary of the final model together with visualization of the results in
the following section.

3.5 Statistical model

Figure 2 shows the time-course of pupil dilation for reduced and citation forms esti-
mated by the model (left) and the comparison between the two forms (right). The
plot on the left indicates that reduced forms elicit greater pupil dilation compared
to citation forms. The plot on the right reveals the fact that the difference between
the two forms are significant in the time window from 200 to 2000 ms. Figure 3
shows the degree of pupil dilation across the P-O consistency index for the two forms
estimated by the model (left) and the comparison between the two (right). Similar
to Figure 2, the plot on the left shows that reduced forms evoke larger pupil dilation

2The number of basis functions (knots) determines the degree of wiggliness of the estimated curve.
Please see Wood (2006) or Sóskuthy (2017) for an overview of basis function.
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Table 3: The summary of the final model, showing the parametric coefficients and
approximate significance of smooth terms in the model: estimated degrees of freedom
(edf), reference degrees of freedom (Ref.df), F- and p- values for smooth terms.

Parametric coefficients Estimate Std.Error t-value p-value

Intercept 26.858 2.790 9.626 <2e-16***
Reduction:Reduced 22.744 4.072 5.585 2.34e-08***

Smooth terms edf Ref.df F-value p-value

s(Time):Citation 3.928 3.979 80.859 <2e-16***
s(Time):Reduced 3.927 3.978 126.731 <2e-16***
s(P-O Consistency):Citation 1.003 1.004 2.729 0.095458
s(P-O Consistency):Reduced 1.005 1.007 0.028 0.824102
s(BaselinePupilSize) 1.113 1.202 63.313 <2e-16***
s(WordDuration) 1.015 1.021 13.377 0.000523***
s(Trail Index) 5.305 6.351 25.323 <2e-16***
s(GazeX, GazeY) 6.395 7.743 15.435 <2e-16***
s(Time, ParIDConsis) 807.227 1773.000 1.481 <2e-16***
s(Time, ItemReduc) 555.410 2255.000 1.143 <2e-16***

than citation forms. The plot also reveals a trend, particularly citation forms, where
the degree of pupil dilation becomes larger as P-O consistency increases. The plot
on the right shows that the difference between the two forms are significant in the
range of the P-O consistency index from 0 to 1. We need to, however, assess these
differences formally whether the differences between the two forms are significant due
to a constant difference (the overall degree of pupil dilation), a non-linear or linear
difference (the trend of pupil dilation over time or the trend of pupil dilation across
the P-O consistency index), or a combination of the constant and non-linear/linear
differences. If the significance holds with the linear difference across the P-O consis-
tency index, it means that there is an interaction between the effect of reduction and
P-O consistency.

Following the procedure illustrated in Wieling (2018), we evaluated the differ-
ences using an ordered factor difference smooth (See Wieling, 2018 for an overview
of an ordered factor difference smooth). The results demonstrate that the differ-
ences between the two forms are significant due to the overall degree of pupil dilation
(t=4.722, p<.001) but not due to the trend of pupil dilation over time (edf=3.48,
F=1.28, p=0.27) or the trend of pupil dilation across the P-O consistency index
(edf=1.01, F=2.15, p=0.12). This suggests there is no interaction between the ef-
fect of reduction and P-O consistency; that is, reduction does not influence the P-O
consistency effect. As a result, the P-O consistency effect does not interact with the
actual pronunciation (reduced forms) of words. However, although there is no inter-
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Figure 2: The time-course of pupil dilation for reduced and citation forms estimated
by the model (left) and the comparison between the two forms (right). The vertical
red dot lines in the comparison plot indicate that the difference between the two forms
is significant between the two red lines.

action between the effect of reduction and P-O consistency, the relative size of P-O
consistency effects visualized in Figure 3 reveals a trend in which reduced forms show
a smaller P-O consistency effect as compared to citation forms. To better understand
the trend, we need to fit models separately for the high and low P-O consistency index,
as well as for reduced and citation forms. Furthermore, there is another trend found
in Figure 3, in which the degree of pupil dilation becomes greater as P-O consistency
increases. This result conflicts with what has been found by Hino et al. (2017). We
need to study further about how to measure P-O consistency for Japanese words and
how to interpret the results of the measurement, since we found that the way the P-O
consistency index is calculated needs to be optimized and that the interpretation of
the index does not seem to reflect what it is supposed to reflect.

4. Discussion

One possible interpretation of our results is that reduced forms do not impact the ef-
fect of P-O consistency, since reduced forms are connected to the citation forms in the
mental lexicon and the reduced acoustic properties are restored based on the citation
form during the recognition of spoken words (Kemps et al., 2004). This restoration
process allows listeners to ‘hear’ the reduced acoustic information (Kemps et al.,
2004), and the P-O consistency effect interacts with the restored citation forms. Fi-
nally, our results provide additional evidence that there is an influence of orthography
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Figure 3: The degree of pupil dilation across the P-O consistency index for reduced
and citation forms estimated by the model (left) and the comparison between the
two forms (right). The vertical red dot lines in the comparison plot indicate that the
difference between the two forms is significant between the two red lines.

in spoken word recognition. This orthographic influence challenges models of spoken
word recognition, since it is unknown where the orthographic effect resides in the pro-
cess of spoken word recognition. Taft (2011) argues that the orthographic information
is integrated into abstract phonological representations; therefore, the orthographic
effect resides in the domain of phonological processing. Furthermore, ERP studies
have provided evidence for Taft’s account in both alphabetic and logographic lan-
guages (Perre et al., 2009; Chen et al., 2016). However, there is one important issue
to be addressed, particularly for Japanese. As discussed earlier, Japanese words can
be written in multiple types of scripts, although the logographic script is most com-
monly used. In other words, it is unclear which script should be integrated into the
phonological representations. Pylkkänen and Okano (2010) argue that, based on the
results of visual word recognition experiments, multiple types of scripts are repre-
sented as part of the same representation if the scripts represent the same sound. In
short, we need to investigate how multiple types of orthography are represented in
the mind to further examine the effect of P-O consistency in Japanese.

5. Conclusion

The present study examined how the P-O consistency effect interacts with phonetic
reduction in Japaneses by comparing the time-course of the effect between reduced
and citation forms as indexed by pupillary response. Our results demonstrated that
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reduced forms elicit larger pupil dilation than citation forms and that reduction does
not impact the effect of P-O consistency. We need further research for the nature of
Japanese orthographic representation.
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